If it's not what You are looking for type in the equation solver your own equation and let us solve it.
66x^2+78x=0
a = 66; b = 78; c = 0;
Δ = b2-4ac
Δ = 782-4·66·0
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-78}{2*66}=\frac{-156}{132} =-1+2/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+78}{2*66}=\frac{0}{132} =0 $
| 12+2x-6+4x=2x+10 | | 7(x=4)=8x+31 | | 12+2x-6=4x=2x=10 | | 4/5x+2=-1/5x+6 | | 2x=100=22 | | 16=v+7v | | 8–12x=-10+3x | | -8x+87=-3 | | -24-4x+6x=6 | | (37b-1)-9(4b+3)=-7 | | y-8.1=5.65 | | 12x+3x=18-3 | | -11=3u-8 | | 8-(3y-8)=4-4y | | -2z^2-2z+3=0 | | 2x=100=10 | | x^2–28x+340=0 | | y/3-3=9 | | 6x+10-2x=4x | | -3(x-10)=9 | | x/2+8=37 | | 2(x-7)^2+8=0 | | 14x+1-x=7+x | | X-2/5+x/3=x/2 | | 9-x+6=3 | | 0.4-0.2=0.6y+3 | | 3(2y+1)=2(1+y)+9 | | 6^4x^-5+9=225 | | 30x2+11x=0 | | 2x+25=3x-19 | | 5x+45=x-3 | | 6^4x-5+9=225 |